
Risha George
Software Safety Lead, GSFC

NASA GSFC Supply Chain Management Conference
October 21, 2010

Best Practices in Software Assurance

Software Assurance Overview
Software Assurance is an umbrella risk identification and mitigation strategy for safety and
mission assurance of all NASA’s software

SW
Quality V&V

Software
Safety

Software
Reliability IV&V

Quality Engineering
Quality Control
Quality Assurance

Process &
Product

What do we do
 The planned and systematic set of activities that ensure conformance of software life

cycle processes and products to requirements, standards, and procedures.

 Assure that software products are of high quality and operate safely

 Assists in risk mitigation by minimizing defects and preventing problems

 Assures that software meets its specified requirements, conform to standards, are
consistent, complete, correct, safe, and reliable and satisfy customer needs.

 Assures that all software processes are appropriate and implemented according to plan,
meet any required standards, and quality requirements.

Software Assurance Disciplines
 Software Quality: planned and systematic set of activities to assure quality is built into the

software. Assures that the standards, processes, and procedures are appropriate for the project and
are correctly implemented.

 Software Safety: a systematic approach to identifying, analyzing, and tracking software mitigation
and control of hazards and hazardous functions to ensure safer software operation within a system.

 Software Reliability: defines the requirements for software controlled system fault/failure
detection, isolation, and recovery; reviews the software development processes and products for
software error prevention and/or reduced functionality states

 Verification and Validation: verification ensures “you built it right” and validation ensures “you
built the right thing”

 Independent Verification and Validation: Verification and validation performed by an
organization that is technically, managerially, and financially independent.

Early Involvement
 Software assurance activities begin during the concept/initiation phase of the

development process and proceed throughout maintenance.

 The goal is to build safety, reliability, and quality into the software product.

 Software assurance partners with engineering, early in the project, to build the highest
quality software.

 Software assurance personnel must assure that
the right requirements are in place from the
beginning.

 Don’t wait until CDR or even PDR to add
software assurance to a given project.

We need a plan
 Document your software assurance activities in

a Software Assurance Plan.

 Software Assurance Plans are typically due at the
System Requirements Review (SRR).

 Most organizations have a template for Software Assurance Plans or they follow
IEEE-STD-730-2002.

 Don’t just write the plan and let it collect dust on the shelf or in your hard drive.
Revisit the Software Assurance Plan as the project progresses.

 Get buy-in from the project and your organization on your approach. This is your
communication tool.

Tailor Software Assurance Efforts
 Software assurance is a balancing activity that must be tailored as

appropriate for each project

 Software assurance activities should be tailored based on risk

 Determine software classification and safety
criticality upfront to help scope efforts

 Software assurance engineers must make
trade-offs, based on their experience and
the software risks on a project.

Not a checklist!
 Software assurance is not only about using a checklist to

perform process and product audits

 Checklists are important because they provide objective
evidence by which a process or product may be evaluated
BUT…

 If our main focus becomes a checklist, then we are missing
the mark

Focus on Reducing Risk
 Identify, address and eliminate software risk items before they become threats

to success or major sources of rework.

 Software assurance activities should be driven by risk (includes safety, reliability
and quality).

 Need a communication path to management for Software Assurance engineers
to raise issues and concerns that they have on a project

 Get involved in the project’s formal risk management process.

 Software assurance engineers can rely on Safety & Mission Assurance technical
authority, if necessary.

Good communication is key
 A good software assurance engineer must

possess good communication skills.

 Essentially, we are evaluating software
products and processes; must be as
diplomatic as possible.

 Must win the trust and respect of the
software system developers

 In order to make a difference, your ideas and suggestions must be accepted by the
project team.

 Building relationships with the project team members is the best way to ensure that your
voice is heard.

Maintaining Independence
 Independence implies performing product quality evaluations by an

outside organization (NASA governance model)

 Need for independence arises because developer may have a biased
expectation of what a product should be; could miss anomalies; could
fail to perform certain checks

 Notion of independence is applied to reduce errors resulting from
extensive familiarity with the product being evaluated

 Important to maintain independence while still being a team player

It’s not ALL about Quality
 Safety and Reliability are critical aspects of software assurance as well as Quality

 A system safety process usually contains the following elements:

• Planning

• Identifying and characterizing the hazards

• Assessing and prioritizing risks and making risk decisions

• Reducing risks to acceptable levels through valid controls

• Verifying that risks are reduced

• Tracking hazards, risks, and problems

 Software safety efforts should include each element of a good system safety process

 Qualitative reliability analysis should also include software as part of the system (e.g.
Fault Tree Analysis, Failure Modes and Effects Analysis)

Identifying safety-critical software
 Don’t be afraid to declare software as safety-critical

 How do I know if software is safety-critical?
 Resides in a safety-critical system (as determined by a hazard analysis) AND at least one of the following apply:

 1) Causes or contributes to a hazard.
 2) Provides control or mitigation for hazards.
 3) Controls safety-critical functions.
 4) Processes safety-critical commands or data.
 5) Detects and reports, or takes corrective action, if the system reaches a specific hazardous state.
 6) Mitigates damage if a hazard occurs.
 7) Resides on the same system (processor) as safety-critical software.

 Processes data or analyzes trends that lead directly to safety decisions.
 Provides full or partial verification or validation of safety-critical systems, including hardware or software subsystems.

 Software Safety efforts should be based on risk. (See the

NASA Software Safety Guidebook, NASA-GB-8719.13 for details)

 Software Assurance engineers must maintain close communication with

System Safety engineers in order to make this determination. They

should be the liaison between System Safety and the Software

Engineers.

Ariane 5 Explosion

Software Safety generic requirements
NPR 7150.2, NASA Software Engineering Requirements, section 2.2.12:
 Safety-critical software is initialized, at first start and at restarts, to a known safe state.

 Safety-critical software safely transitions between all predefined known states.

 Termination performed by software of safety critical functions is performed to a known safe state.

 Operator overrides of safety-critical software functions require at least two independent actions by an
operator.

 Operator overrides of safety-critical software functions require at least two independent actions by an
operator.

 Safety-critical software rejects commands received out of sequence, when execution of those commands
out of sequence can cause a hazard.

 Safety-critical software detects inadvertent memory modification and recovers to a known safe state.

Software Safety generic requirements
 Safety-critical software performs integrity checks on inputs and outputs to/from the software system.

 Safety-critical software performs prerequisite checks prior to the execution of safety-critical software commands.

 No single software event or action is allowed to initiate an identified hazard.

 Safety-critical software responds to an off nominal condition within the time needed to prevent a hazardous event.

 Software provides error handling of safety-critical functions.

 Safety-critical software has the capability to place the system into a safe state.

 Safety-critical elements (requirements, design elements, code components, and interfaces) are uniquely identified
as safety-critical.

 Incorporate requirements in the coding methods, standards, and/or criteria to clearly identify safety-critical code
and data within source code comments.

References
 NASA Software Assurance Standard, NASA-STD-8739

 NASA Software Safety Standard, NASA-STD-8719.13B

 NASA Software Safety Guidebook, NASA-GB-8719.13

 NASA Software Engineering Requirements, NPR 7150.2

	Best Practices in Software Assurance
	Software Assurance Overview
	What do we do
	Software Assurance Disciplines
	Early Involvement
	We need a plan
	Tailor Software Assurance Efforts
	Not a checklist!
	Focus on Reducing Risk
	Good communication is key
	Maintaining Independence
	It’s not ALL about Quality
	Identifying safety-critical software
	Software Safety generic requirements
	Software Safety generic requirements
	References

