
Risha George
Software Safety Lead, GSFC

NASA GSFC Supply Chain Management Conference
October 21, 2010

Best Practices in Software
Assurance

Software Assurance Overview
Software Assurance is an umbrella risk identification and mitigation
strategy for safety and mission assurance of all NASA’s software

SW
Quality V&V

Software
Safety

Software
Reliability IV&V

Quality Engineering
Quality Control
Quality Assurance

Process
&
Product

What do we do
  The planned and systematic set of activities that ensure conformance of

software life cycle processes and products to requirements, standards,
and procedures.

  Assure that software products are of high quality and operate safely

  Assist in risk mitigation by minimizing defects and preventing problems

  Assure that software meets its specified requirements, conform to
standards, are consistent, complete, correct, safe, and reliable and
satisfy customer needs.

  Assure that all software processes are appropriate and implemented
according to plan, meet any required standards, and quality
requirements.

Software Assurance Disciplines
  Software Quality: planned and systematic set of activities to assure quality is

built into the software. Assures that the standards, processes, and procedures
are appropriate for the project and are correctly implemented.

  Software Safety: a systematic approach to identifying, analyzing, and tracking
software mitigation and control of hazards and hazardous functions to ensure
safer software operation within a system.

  Software Reliability: defines the requirements for software controlled system
fault/failure detection, isolation, and recovery; reviews the software development
processes and products for software error prevention and/or reduced functionality
states

  Verification and Validation: verification ensures “you built it right” and validation
ensures “you built the right thing”

  Independent Verification and Validation: Verification and validation performed
by an organization that is technically, managerially, and financially independent.

Early Involvement
  Software assurance activities begin during the concept/initiation phase

of the development process and proceed throughout maintenance.

  The goal is to build safety, reliability, and quality into the software
product.

  Software assurance partners with engineering, early in the project, to
build the highest quality software.

  Software assurance personnel must assure that
 the right requirements are in place from the
 beginning.

  Don’t wait until CDR or even PDR to add
 software assurance to a given project.

Lunar Reconnaissance
Orbiter

We need a plan
  Document your software assurance activities in a Software

 Assurance Plan.

  Software Assurance Plans are typically due at the System
 Requirements Review (SRR).

  Most organizations have a template for Software Assurance Plans or they
follow IEEE-STD-730-2002.

  Acquirer and provider software assurance plans should complement each
other.

  Don’t just write the plan and let it collect dust on the shelf or in your hard
drive. Revisit the Software Assurance Plan as the project progresses.

  Get buy-in from the project and your organization on your approach. This is
your communication tool.

Tailor Software Assurance Efforts
  Software assurance is a balancing activity that must

be tailored as appropriate for each project

  Software assurance activities should be tailored
based on risk

  Determine software classification and safety
 criticality upfront to help scope efforts

  Software assurance engineers must make
 trade-offs, based on their experience and
 the software risks on a project. NPOESS Preparatory Project

Capability Maturity Model Integration
  Process improvement approach that provides organizations with the

essential elements of effective processes that ultimately improve their
performance

  Systems engineering model developed by Software Engineering Institute at
Carnegie Mellon University; funded by Department of Defense

  Your visibility into the organization's activities is increased to help you
ensure that your product or service meets the customer's expectations

  Process and Product Quality Assurance ensure that the processes are
effective and are followed; provide independent insight back to the process
owners as to how well the process is working

  CMMI for Acquisition is a best practices model that can help improve
relationships with suppliers by helping the acquisition team improve their
own processes

Not a checklist!
  Software assurance is not only about using a

checklist to perform process and product audits

  Checklists are important because they provide
objective evidence by which a process or product
may be evaluated BUT…

  If our main focus becomes a checklist, then we
are missing the mark

Focus on Reducing Risk
  Identify, address and eliminate software risk items before they

become threats to success or major sources of rework

  Software assurance activities should be driven by risk (includes
safety, reliability and quality)

  Need a communication path to management for Software
Assurance engineers to raise issues and concerns that they
have on a project

  Get involved in the project’s formal risk management process

  Software assurance engineers can rely on Safety & Mission
Assurance technical authority, if necessary

Good communication is key
  A good software assurance engineer must

 possess good communication skills.

  Essentially, we are evaluating software
 products and processes; must be as
 diplomatic as possible.

  Must win the trust and respect of the
 software system developers

  In order to make a difference, your ideas and suggestions must be
accepted by the project team.

  Building relationships with the project team members is the best way to
ensure that your voice is heard.

Solar Dynamics Observatory launch

Maintaining Independence
  Independence implies performing product quality

evaluations by an outside organization

  Need for independence arises because developer may
have a biased expectation of what a product should be;
could miss anomalies; could fail to perform certain checks

  Notion of independence is applied to reduce errors
resulting from extensive familiarity with the product being
evaluated

  Important to maintain independence while still being a
team player

It’s not ALL about Quality
  Safety and Reliability are critical aspects of software assurance as well as Quality

  A system safety process usually contains the following elements:

•  Planning

•  Identifying and characterizing the hazards

•  Assessing and prioritizing risks and making risk decisions

•  Reducing risks to acceptable levels through valid controls

•  Verifying that risks are reduced

•  Tracking hazards, risks, and problems

  Software safety efforts should include each element of a good system safety
process

  Qualitative reliability analysis should also include software as part of the system
(e.g. Fault Tree Analysis, Failure Modes and Effects Analysis)

Mars Polar Lander

Identifying safety-critical software
  Don’t be afraid to declare software as safety-critical 

  How do I know if software is safety-critical?
  Resides in a safety-critical system (as determined by a hazard analysis) AND at least one of the

following apply:
  1) Causes or contributes to a hazard.
  2) Provides control or mitigation for hazards.
  3) Controls safety-critical functions.
  4) Processes safety-critical commands or data.
  5) Detects and reports, or takes corrective action, if the system reaches a specific hazardous state.
  6) Mitigates damage if a hazard occurs.
  7) Resides on the same system (processor) as safety-critical software.

  Processes data or analyzes trends that lead directly to safety decisions.
  Provides full or partial verification or validation of safety-critical systems, including hardware or software

subsystems.

  Software Safety efforts should be based on risk. (See the
 NASA Software Safety Guidebook, NASA-GB-8719.13 for details)

  Software Assurance engineers must maintain close communication with
 System Safety engineers in order to make this determination. They
 should be the liaison between System Safety and the Software
 Engineers.

Ariane 5 Explosion

Software Safety generic requirements
NPR 7150.2, NASA Software Engineering Requirements, section 2.2.12:
  Safety-critical software is initialized, at first start and at restarts, to a known safe state.

  Safety-critical software safely transitions between all predefined known states.

  Termination performed by software of safety critical functions is performed to a known
safe state.

  Operator overrides of safety-critical software functions require at least two independent
actions by an operator.

  Operator overrides of safety-critical software functions require at least two independent
actions by an operator.

  Safety-critical software rejects commands received out of sequence, when execution
of those commands out of sequence can cause a hazard.

  Safety-critical software detects inadvertent memory modification and recovers to a
known safe state.

Software Safety generic requirements
  Safety-critical software performs integrity checks on inputs and outputs to/from the software

system.

  Safety-critical software performs prerequisite checks prior to the execution of safety-critical
software commands.

  No single software event or action is allowed to initiate an identified hazard.

  Safety-critical software responds to an off nominal condition within the time needed to
prevent a hazardous event.

  Software provides error handling of safety-critical functions.

  Safety-critical software has the capability to place the system into a safe state.

  Safety-critical elements (requirements, design elements, code components, and interfaces)
are uniquely identified as safety-critical.

  Incorporate requirements in the coding methods, standards, and/or criteria to clearly identify
safety-critical code and data within source code comments.

References
  NASA Software Assurance Standard, NASA-STD-8739

  NASA Software Safety Standard, NASA-STD-8719.13B

  NASA Software Safety Guidebook, NASA-GB-8719.13

  NASA Software Engineering Requirements, NPR 7150.2

