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Software Assurance Overview 
Software Assurance is an umbrella risk identification and mitigation 
strategy for safety and mission assurance of all NASA’s software 
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What do we do 
  The planned and systematic set of activities that ensure conformance of 

software life cycle processes and products to requirements, standards, 
and procedures. 

  Assure that software products are of high quality and operate safely 

  Assist in risk mitigation by minimizing defects and preventing problems 

  Assure that software meets its specified requirements, conform to 
standards, are consistent, complete, correct, safe, and reliable and 
satisfy customer needs. 

  Assure that all software processes are appropriate and implemented 
according to plan, meet any required standards, and quality 
requirements. 



Software Assurance Disciplines 
  Software Quality: planned and systematic set of activities to assure quality is 

built into the software. Assures that the standards, processes, and procedures 
are appropriate for the project and are correctly implemented. 

  Software Safety: a systematic approach to identifying, analyzing, and tracking 
software mitigation and control of hazards and hazardous functions to ensure 
safer software operation within a system.   

  Software Reliability: defines the requirements for software controlled system 
fault/failure detection, isolation, and recovery; reviews the software development 
processes and products for software error prevention and/or reduced functionality 
states 

  Verification and Validation: verification ensures “you built it right” and validation 
ensures “you built the right thing” 

  Independent Verification and Validation: Verification and validation performed 
by an organization that is technically, managerially, and financially independent. 



Early Involvement 
  Software assurance activities begin during the concept/initiation phase 

of the development process and proceed throughout maintenance. 

  The goal is to build safety, reliability, and quality into the software 
product. 

  Software assurance partners with engineering, early in the project, to 
build the highest quality software. 

  Software assurance personnel must assure that 
 the right requirements are in place from the 
 beginning. 

  Don’t wait until CDR or even PDR to add  
 software assurance to a given project. 

Lunar Reconnaissance 
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We need a plan 
  Document your software assurance activities in a Software 

 Assurance Plan. 

  Software Assurance Plans are typically due at the System 
 Requirements Review (SRR). 

  Most organizations have a template for Software Assurance Plans or they 
follow IEEE-STD-730-2002.   

  Acquirer and provider software assurance plans should complement each 
other. 

  Don’t just write the plan and let it collect dust on the shelf or in your hard 
drive.  Revisit the Software Assurance Plan as the project progresses. 

  Get buy-in from the project and your organization on your approach.  This is 
your communication tool. 



Tailor Software Assurance Efforts 
  Software assurance is a balancing activity that must 

be tailored as appropriate for each project 

  Software assurance activities should be tailored 
based on risk 

  Determine software classification and safety 
 criticality upfront to help scope efforts 

  Software assurance engineers must make 
 trade-offs, based on their experience and 
 the software risks on a project. NPOESS Preparatory Project 



Capability Maturity Model Integration  
  Process improvement approach that provides organizations with the 

essential elements of effective processes that ultimately improve their 
performance 

  Systems engineering model developed by Software Engineering Institute at 
Carnegie Mellon University; funded by Department of Defense 

  Your visibility into the organization's activities is increased to help you 
ensure that your product or service meets the customer's expectations 

  Process and Product Quality Assurance ensure that the processes are 
effective and are followed; provide independent insight back to the process 
owners as to how well the process is working 

  CMMI for Acquisition is a best practices model that can help improve 
relationships with suppliers by helping the acquisition team improve their 
own processes 



Not a checklist! 
  Software assurance is not only about using a 

checklist to perform process and product audits 

  Checklists are important because they provide 
objective evidence by which a process or product 
may be evaluated BUT… 

  If our main focus becomes a checklist, then we 
are missing the mark 



Focus on Reducing Risk 
  Identify, address and eliminate software risk items before they 

become threats to success or major sources of rework 

  Software assurance activities should be driven by risk (includes 
safety, reliability and quality) 

  Need a communication path to management for Software 
Assurance engineers to raise issues and concerns that they 
have on a project 

  Get involved in the project’s formal risk management process 

  Software assurance engineers can rely on Safety & Mission 
Assurance technical authority, if necessary 



Good communication is key 
  A good software assurance engineer must 

 possess good communication skills. 

  Essentially, we are evaluating software 
 products and processes; must be as 
 diplomatic as possible. 

  Must win the trust and respect of the 
 software system developers 

  In order to make a difference, your ideas and suggestions must be 
accepted by the project team. 

  Building relationships with the project team members is the best way to 
ensure that your voice is heard. 

Solar Dynamics Observatory launch 



Maintaining Independence 
  Independence implies performing product quality 

evaluations by an outside organization 

  Need for independence arises because developer may 
have a biased expectation of what a product should be; 
could miss anomalies; could fail to perform certain checks 

  Notion of independence is applied to reduce errors 
resulting from extensive familiarity with the product being 
evaluated 

  Important to maintain independence while still being a 
team player 



It’s not ALL about Quality 
  Safety and Reliability are critical aspects of software assurance as well as Quality 

  A system safety process usually contains the following elements: 

•  Planning 

•  Identifying and characterizing the hazards 

•  Assessing and prioritizing risks and making risk decisions 

•  Reducing risks to acceptable levels through valid controls 

•  Verifying that risks are reduced 

•  Tracking hazards, risks, and problems 

  Software safety efforts should include each element of a good system safety 
process 

  Qualitative reliability analysis should also include software as part of the system 
(e.g. Fault Tree Analysis, Failure Modes and Effects Analysis) 

Mars Polar Lander 



Identifying safety-critical software 
  Don’t be afraid to declare software as safety-critical  

  How do I know if software is safety-critical? 
  Resides in a safety-critical system (as determined by a hazard analysis) AND at least one of the 

following apply:  
  1) Causes or contributes to a hazard.  
  2) Provides control or mitigation for hazards.  
  3) Controls safety-critical functions.  
  4) Processes safety-critical commands or data.  
  5) Detects and reports, or takes corrective action, if the system reaches a specific hazardous state.  
  6) Mitigates damage if a hazard occurs.  
  7) Resides on the same system (processor) as safety-critical software.  

  Processes data or analyzes trends that lead directly to safety decisions. 
  Provides full or partial verification or validation of safety-critical systems, including hardware or software 

subsystems.  

  Software Safety efforts should be based on risk.  (See the 
 NASA Software Safety Guidebook, NASA-GB-8719.13 for details) 

  Software Assurance engineers must maintain close communication with 
 System Safety engineers in order to make this determination. They 
 should be the liaison between System Safety and the Software 
 Engineers. 

Ariane 5 Explosion 



Software Safety generic requirements 
NPR 7150.2, NASA Software Engineering Requirements, section 2.2.12: 
  Safety-critical software is initialized, at first start and at restarts, to a known safe state. 

  Safety-critical software safely transitions between all predefined known states. 

  Termination performed by software of safety critical functions is performed to a known 
safe state. 

  Operator overrides of safety-critical software functions require at least two independent 
actions by an operator. 

  Operator overrides of safety-critical software functions require at least two independent 
actions by an operator. 

  Safety-critical software rejects commands received out of sequence, when execution 
of those commands out of sequence can cause a hazard. 

  Safety-critical software detects inadvertent memory modification and recovers to a 
known safe state. 



Software Safety generic requirements 
  Safety-critical software performs integrity checks on inputs and outputs to/from the software 

system. 

  Safety-critical software performs prerequisite checks prior to the execution of safety-critical 
software commands. 

  No single software event or action is allowed to initiate an identified hazard. 

  Safety-critical software responds to an off nominal condition within the time needed to 
prevent a hazardous event. 

  Software provides error handling of safety-critical functions. 

  Safety-critical software has the capability to place the system into a safe state. 

  Safety-critical elements (requirements, design elements, code components, and interfaces) 
are uniquely identified as safety-critical.  

  Incorporate requirements in the coding methods, standards, and/or criteria to clearly identify 
safety-critical code and data within source code comments. 
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