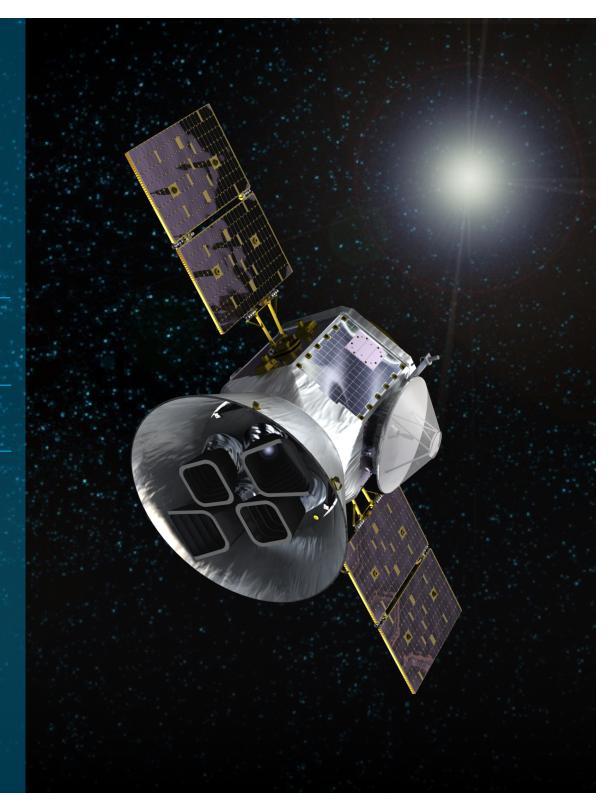
Transiting Exoplanet Survey Satellite (TESS) NASA's Next Mission to Find Strange, New Worlds

Matt Ritsko, TESS Deputy Project Manager for Resources Shane Hynes, TESS Mission Systems Engineer Bob Calvo, Chief Safety Mission Assurance Officer

SS

Project Description


NASA's next Exoplanet hunter

Launched April 2018

George Ricker (P.I.)

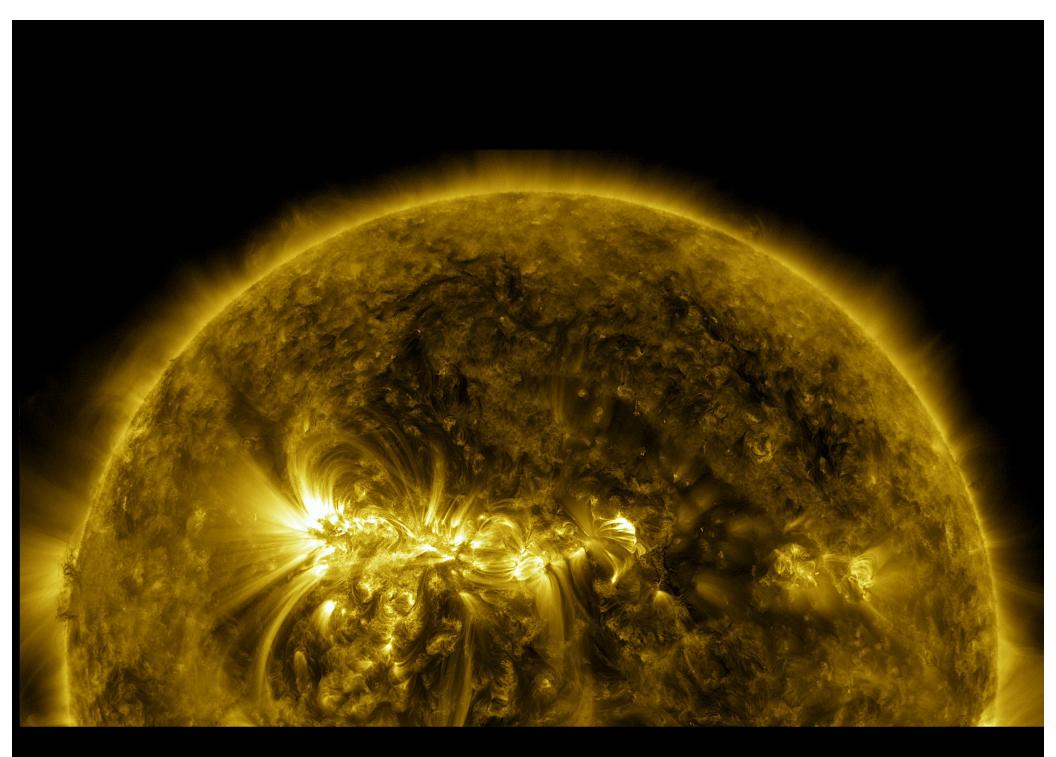
Massachusetts Institute of Technology

collaboration including: NASA Goddard, NASA Ames, MIT Lincoln Lab, Orbital ATK, STScI, SAO, Harvard/Smithsonian, MPIA-Germany, Las Cumbres Observatory, Geneva Observatory, OHP-France, University of Florida, Aarhus University-Denmark, Harvard College Observatory, Vanderbilt University

What is an Exoplanet?

I ss

Boldly going to turn science fiction into science fact


Extrasolar planet, or exoplanet, is a planet outside of our solar system

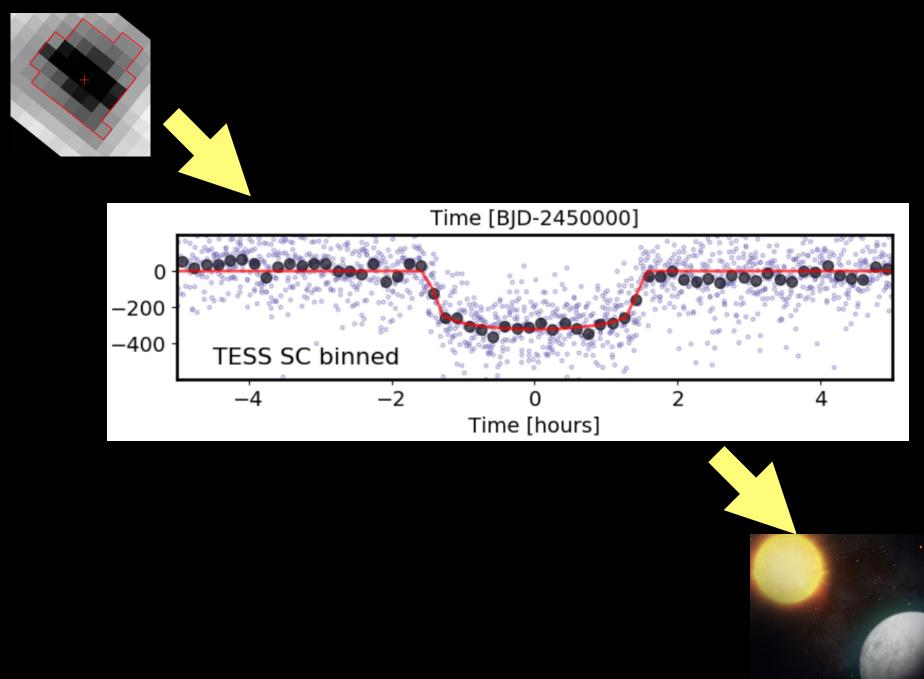
Early thoughts (Giordano Bruno), suspected and imaged in science fiction, to first discovery in 1989. Today, 3,375 confirmed

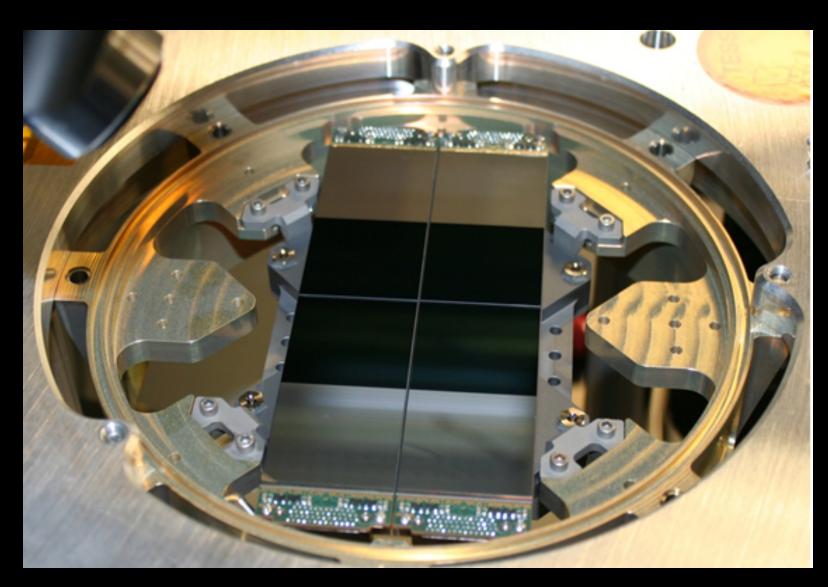
One Method of Discovery: Transits

Shadows of strange new worlds

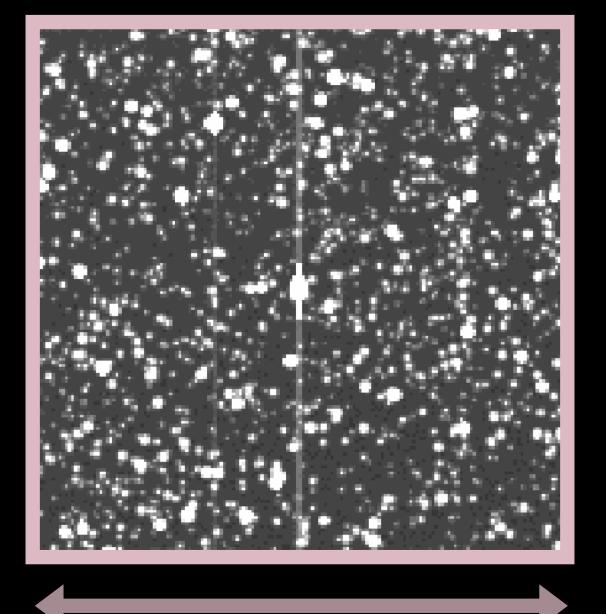
Transit Method

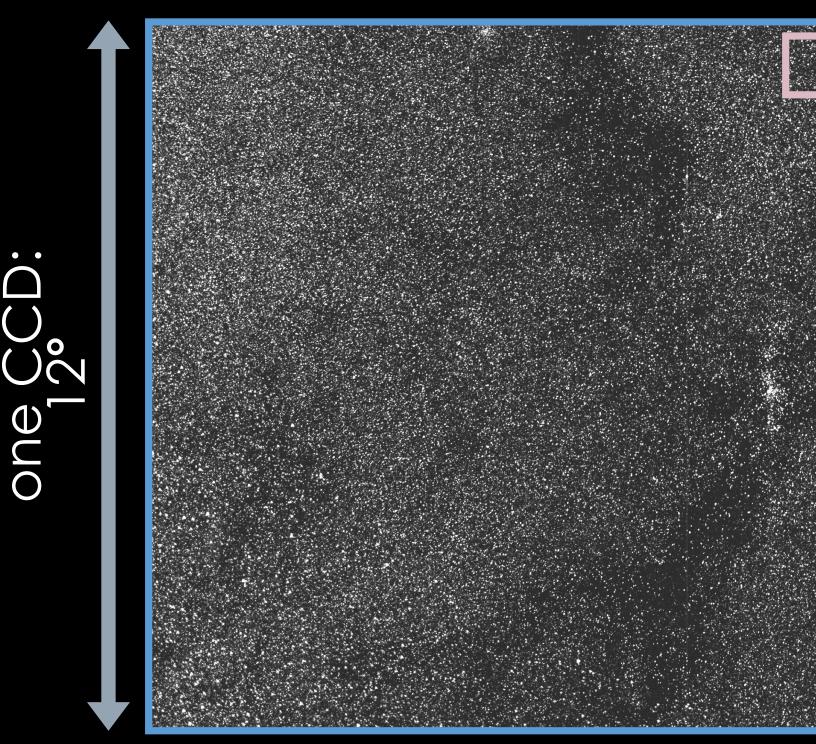
PLANET QUEST THE SEARCH FOR ANOTHER EARTH



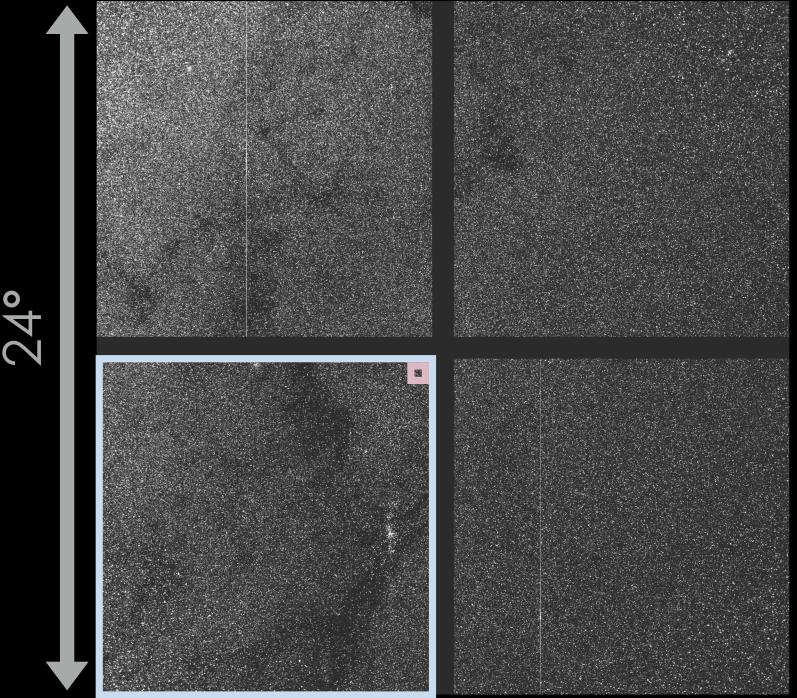


National Aeronautics and Space Administration

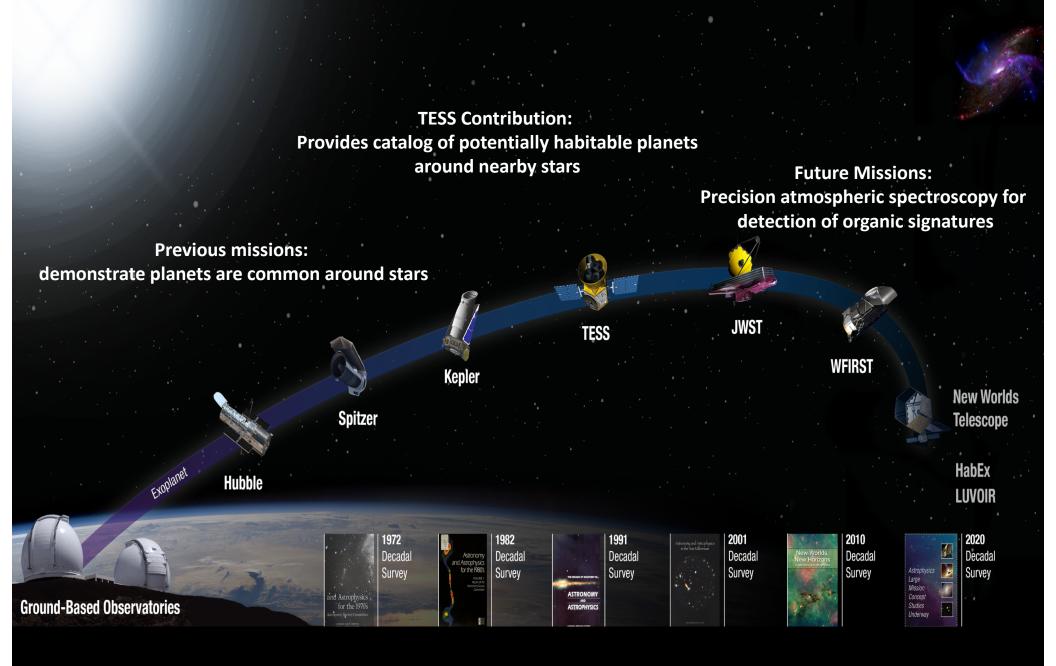

Turning Pixels into Planets

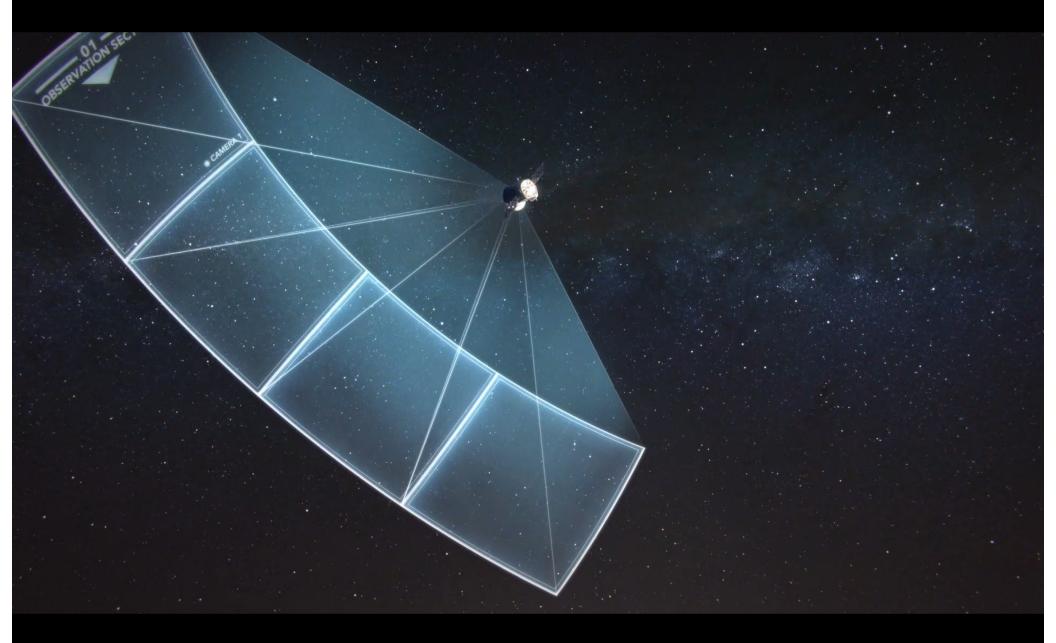


A photometer: a device that can capture and measure the intensity of light (we call it a detector on our spacecraft)



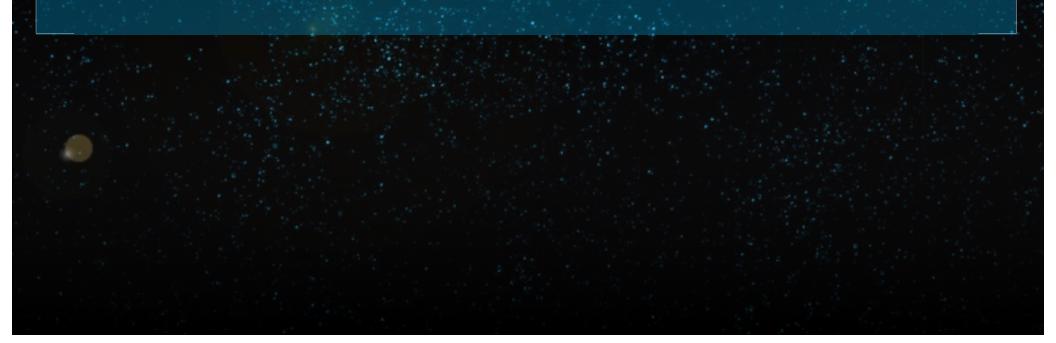
10


View from one TESS camera:


Why TESS? Why Now?

I ss

The first "all-sky" survey of nearby, bright stars



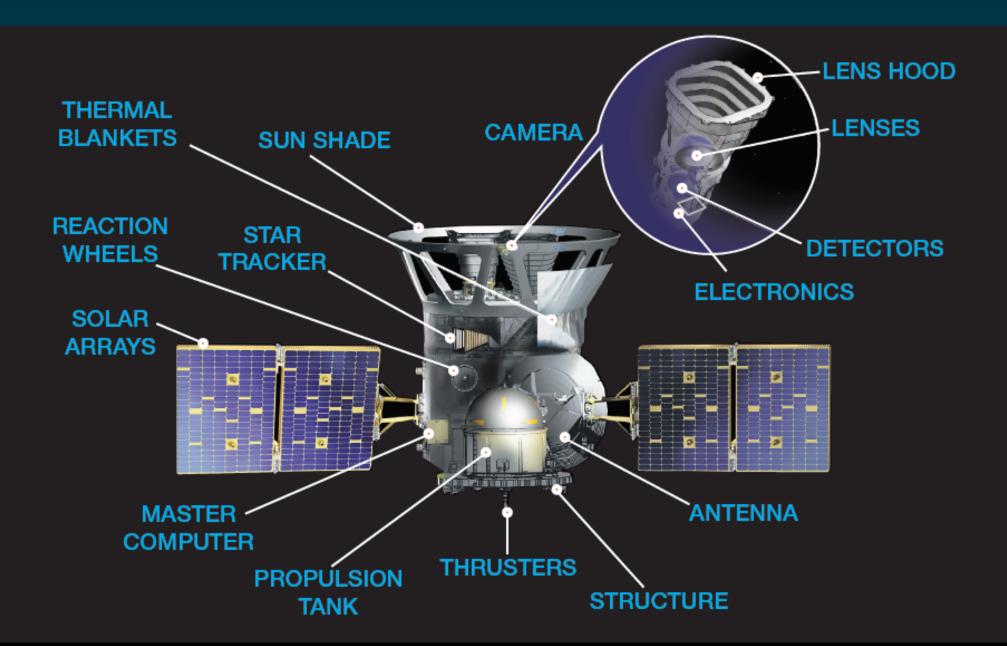
Kepler Search Space: 3000 light-years 0.25% of the sky

TESS Search Space: 300 light-years All-sky

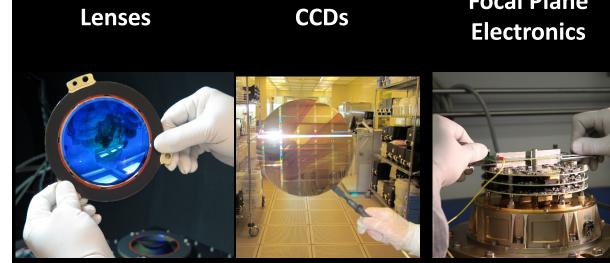
Building TESS

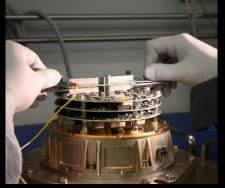
Risk is our business

ss


Many Firsts for an Explorer Mission...

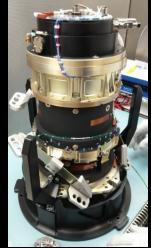
- Teaming arrangement was new and unique
 - Prior Explorer missions with an external PI did not hold Project Management, Systems Engineering and SM&A leadership roles
- Requirements drove a Ka-Band transmitter
 - Way of the future for space missions, with a smaller industry base of experience to draw upon
- SpaceX: TESS was the first official NASA science observatory to fly on a Falcon 9
- Hardware with limited spaceflight experience
 - Examples: FGPAs, RTV
- With some of the same challenges seen on prior Explorer missions:
 - Small budget, relatively short schedule
 - Little/no redundancy within design


TESS Observatory



TESS Observatory

Focal Plane



MIT's Lincoln Laboratory developed camera barrels with lenses (7 in each) to focus the photons from stars to Charged Coupled Devices (CCDs) to capture images of the sky

Low noise electronics translate photons from stars into data. Includes heaters to provide thermal control to cameras

Camera Assembly

Spacecraft

LEO-Star 2 Spacecraft with history of flying on many prior Explorer missions

to fly with TESS

Assembled and tested

at MIT's Kavli Institute

for Astrophysics. Four

cameras were designed

Overall project management authority, leadership and responsibility

Lead for Mission Systems Engineering and Safety and Mission Assurance

Key Tools to Manage Mission Success

- Experienced GSFC Team demonstrated GSFC commitment to the mission
- Rigorous Risk Management Boards
 - Closely linked to project reserves and threat process
- Utilization of resources to mitigate critical risks on the supply chain
- Baseline Change Request Management
 - Challenge: conducting in a timely/effective manner in multiple configuration management systems from partners
- Proven Requirements Verification and test program
 - Insight and oversight

Risk Management Insights: Risks Over Time

											_															
Risk ID 🚽	Summary	15-Seg 🔻	15-Oct 🔻	15-Nov *	15-De(*	16-Jan 🔻	16-Fet 🔻	16-Ma 💌	16-Apr 💌	16-May 💌	16-Jun 💌	16-Jul 🔻	16-Aug 🔻	16-Sep 👻	16-Oct 🔻	16-Nov -	16-Dec 🔻	17-Jan 💌	17-Feb 🔻	17-Mar 🔻	17-Apr 🔻	17-May 🔻	17-Jun 💌	17-Jul 💌	17-Aug 🔻	17-Sep 🔻
0001	Aggressive DHU development schedule	Y 4x2																								
0004	Ka-Band transmitter late delivery	Y 4x3	Y 4x3	Y 3x3	Y 3x3	Y 3x3	Y 4x3		Y 4x3	Y 4x3						Y 2x4		Y 3x4	R 4x4	R 4x4	R 4x4					, r
0007	Ka high gain antenna development			G 3x2																						
0010	CCD fabrication, packaging, and selection aggressive schedule										Y 3x3															
0013	DHU impacted by SCOPE Growth	Y 4x3	Y 4x3	Y 4x3	Y 3x3	Y 3x3	Y 3x3				Y 3x3	Y 3x3	Y 3x3	Y 3x3		Y 2x3			Y 3x3	Y 3x3	Y 3x3					
0016	DHU technical issues	Y 4x3	Y 4x3																							
0018	Limited closed loop testing of fine pointing mode																						G 2x2			
0019	Solar array late delivery								Y 3x3	Y 3x3																
0021	Two TVAC chambers not available for camera TVAC testing / MIT TVAC Chamber certification delays	Y 3x4	Y 3x4	Y 2x4	Y 3x4	Y 3x4	Y 3x4		Y 3x4	Y 3x4	Y 3x3	Y 4x3		Y 3x3												
0021*	S-Band transponder possible solder cracks															Y 4x2		Y 4x3		Y 3x3						
0025	Late delivery of the DHU may impact FSW development			Y 3x3																						
0097	Camera optics / CCD contammination										Y 3x3											Y 2x3				
0102	Contamination from launch vehicle										1 545											Y 2x3				
0158	Camera poser ground and EMI testing	Y 3x3	Y 3x3	Y 3x3																		. 2.13				
0163	Inability to reach SIR maturity on schedule	Y 4x3		Y 4x3	Y 4x3															()						
0164	Madrid 34 m BWG availibility	Y 2x4	Y 2x4	Y 2x4																						
0167	FPE development and test schedule	Y 3x4	Y 3x4	Y 2x4	Y3x4	Y 3x4	Y 3x4		Y 3x4	Y 3x4			Y 3x3													
	Falcon 9/CRS-7 Mishap will delay TESS Launch /																									
0187	Falcon 9 Delays impacting TESS launch / SpaceX LV manifest and certification schedule delays	Y 3x4		Y 3x4	Y3x4	Y 3x4	Y 3x4	Y 3x4	Y 3x4	R 4x4						R 4x4	R 4x4	R 4x4	Y 3x4	Y 3x4	Y 2x4					
0195	Commissioning tools development delays																					G 2x2	Y 4x3	Y 4x3	Y 4x3	Y 4x3
0100	DHU power dissipation		Y 4x2																			02/2	1443	1443	1443	1472
0201	Limited time available for flight		1 4/2																						$ \longrightarrow $	
0209	software/firmware/systems testing of flight-like EDHU DHU or ADHU prior to delivery to				Y 3x3	Y 3x3	Y 3x3				Y 4x3	Y 3x3	Y 4x3	R 4x4	Y 3x4											
0211	OA/Resource contention for Flight like EDU DHU No time between flight like DHU EDU and flight				Y 3x3	Y 3x3	Y 3x3		Y 3x3	Y 3x3	Y 3x3	Y 3x4						_								
0212	board fabrication Flight DHU and ADHU delivered late in observatory flow																		Y 2x3	Y 2x3	Y 2x3	Y 2x3				
0214	ADHU resources for continuation to flight				Y 5x2	Y 5x2	Y 5x2		Y 5x2	Y 5x2																
0216	Flight camera performance issues				1 OAL	TONE	1 GAL		TOAL	TONE					Y 2x5	Y 2x5	Y 2x5	Y 2x5								
0223	GL scientific detector assembly delivery concerns								Y 4x3	Y 4x3	Y 3x4				1 240	1 2/15	1 2/15	1 200								
0231	Flying ADHU impact on LRD/Limited software/firmware testing of flight ADHU prior to integration											Y 2X4	Y 2x4						Y 2x3	Y 2x3	Y 3x4	Y 3x4	Y 2x4	Y 3x4	Y 2x3	Y 2x3
0236	Late camera thermal balance test										Y 3x3															
0242	Parallel Work										Y 4x3	Y 3x3	Y 4x3	Y 4x3	Y 4x3	Y 4x3	Y 5 4x3	Y 4x3								
0246	Resource contention at MKI Between DHU and ADHU											Y 4x3	G 3x2													
0247	Deformed brushes on SADA slip ring																								Y 3x5	Y 3x4
0251	SPOC development delays															Y 4x3	Y 3x3	Y 2x3	Y 2x3							
0255	SIR impacted by verification status																		Y 4x3	Y 3x3						
0257	POC readiness for ground system freeze																					Y 4x3	Y 4x3	Y 4x3	Y 4x3	
0259	Further degradation of SADA insulation resistance																						G 2x2	G 2x2		
0260	Flight camera focus issue after delivery to spacecraft																						Y 2x5	Y 2x5	Y 2x5	Y 2x5
0261	Flight camera focus issue in flight																						Y 2x5	Y 2x5	Y 2x5	Y 2x5
0262	Current HQ held UFE																									Y 2x5
0264	Low schedule margin during observatory I&T																									Y 2x4
2010	No thermal testing of flight-like EDU DHU				Y 3x3	Y 3x3	Y 4x3		Y 4x3	Y 4x2																

Risk Management Insights: Issues Over Time

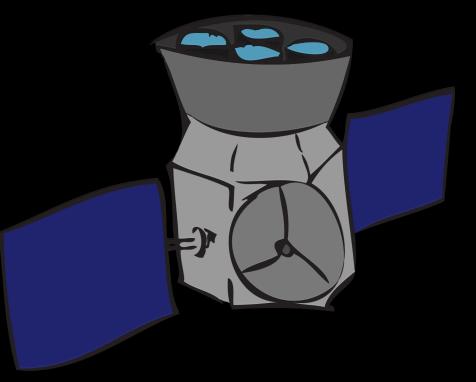
Issue	15-Sep	15-Oct	15-Nov	15-Dec	16-Jan	16-Feb	16-Mar	16-Apr	16-May	16-Jun	16-Jul	16-Aug	16-Sep	16-Oct	16-Nov	16-Dec	17-Jan	17-Feb	17-Mar	17-Apr	17-May	17-Jun	17-Jul	17-Aug	17-Sep
Open CDR technical liens require closure before CDR evaluation can be																									
completed and flight design can be finalized				G	5																				L
Technical and programmatic challenges both on the observatory side																									
and the launch vehicle side have significantly eroded the slack and								v	v	G															I
funded schedule margin remaining against the August 2017 launch								, I		U															I
date.																									L
Instrument Data Handling Unit (DHU) has faced technical design and					v	v		v	y	v	v	Ŷ	v	y	y	v	y	Ŷ	v	G					l
development issues					1			1		-										U					ļ
During acceptance testing of the TSS SADAs at RUAG, the slip ring																									
insulation resistance values were lower than expected with some													Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	G	
values out of spec.																									
The TESS planned FY16 budget was reduced by \$11M below previous								v	y	v	v	y	G												l
anticipated levels in Feb. 2016													Ŭ												
During commercial launch, SpaceX had a failure on 9/21/16														Ŷ	Ŷ	Ŷ	R	R	R	G					L
Flight S-Band transponder may have cracked solder																Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	G			L
During TVAC testing of the firs tTESS flight camera, a focus drift of ~25																									l
microns was identified. The level-5 requirement for allowable focus																					Ŷ	G			I
change from the selected fous is +/- 10 microns.																									L
During box level testing of the Ka transmitter, new manufacturing																					v	V	Ŷ	γ	v
issues were uncovered.																						-			
Current Phase C/D cost reserves are below the 7120.7A requriement																								R	G
Reduction in HQ held UFE guideline increases programmatic risk																								R	G
posture																									, i

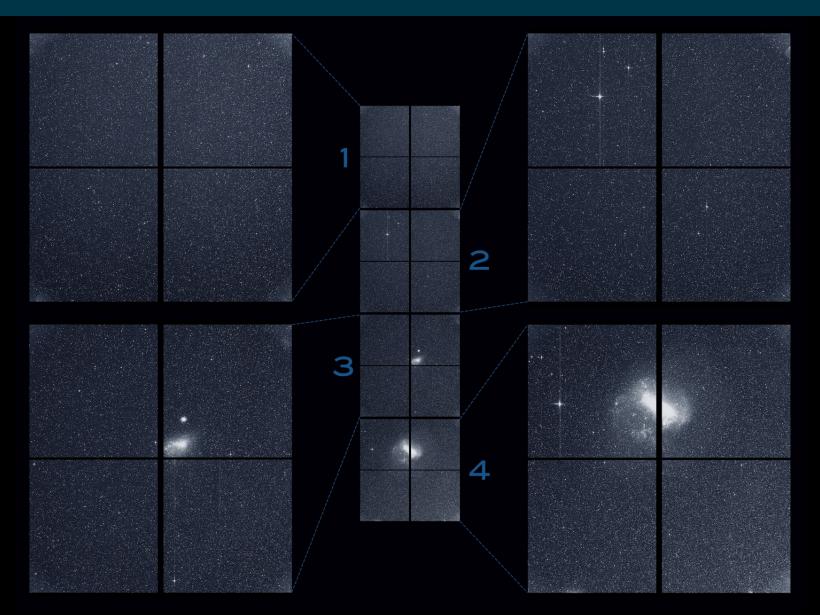
Safety and Mission Assurance (S&MA)

- Mission Assurance Requirements (MAR) flowed to prime
 - Reviewed and Approved Contractor Implementation Plans
- Performed site visits of critical suppliers and implemented Surveillance Plan with emphasis on areas of concern.
 - Insight or oversight was adjusted as necessary.
- Material and Failure Review Boards are the cornerstone of a closed loop corrective action process.
 - Integrated with the Risk Management System as needed.
- SMA collaborated with Systems Engineering and Management throughout the development lifecycle.

Verification Process

Element	SC	INST	Ground	Level 2
Verified By Obs Integration	78	39	77	35
Verified, By EMI/EMC,				
Dynamics	129	39	131	65
Verified by TVAC	129	61	131	65
Verified, Pre-Ship Actual	159	66	260	116
Verified, Pre-Ship Target	174	70	265	144
Verified, @KSC	175	70	266	146
TOTAL Level 3	175	70	266	146





TESS is bringing back science!

TESS: First-Light Image

First Exoplanet Discoveries

Star: Pi Mensae – an M Dwarf Planet: ~2.1 Earth Radii, water-like density Orbit: 6.3 days Distance: 60 Light-Years Away

Star: LHS 3844 – an M Dwarf Planet: ~1.2 Earth Radii Orbit: 11 hours Distance: 49 Light-Years Away

Key Lessons Learned

- Building relationships in all partnerships are key
 - Face-to-Face time early was valuable to learn about organizational culture differences
 - Define what rules to bend, break, and know the ones that are unbreakable
- Risk Management is highly effective when closely tied to programmatic practices and technical judgement
- Teaming arrangement and cost-plus fixed contracts worked well
 - Selected procurement options that made sense
 - Investment in mission success by all parties was more important than
- Small vendors can be very capable, however depth and experience will need mitigations, perhaps ones that cross boundaries to focus on success
- Don't be afraid to pursue insurance policies

CONNECT WITH US!

Websites: NASA HQ: nasa.gov/tess Project Office: tess.gsfc.nasa.gov Science: tess.mit.edu

SS

Social Media:

f /NASATESS

@NASA_TESS @TESSatMIT